Runaway Events Dominate the Heavy Tail of Citation Distributions
نویسندگان
چکیده
Statistical distributions with heavy tails are ubiquitous in natural and social phenomena. Since the entries in heavy tail have unproportional significance, the knowledge of its exact shape is very important. Citations of scientific papers form one of the best-known heavy tail distributions. Even in this case there is a considerable debate whether citation distribution follows the log-normal or power-law fit. The goal of our study is to solve this debate by measuring citation distribution for a very large and homogeneous data. We measured citation distribution for 418,438 Physics papers published in 1980-1989 and cited by 2008. While the log-normal fit deviates too strong from the data, the discrete power-law function with the exponent γ = 3.15 does better and fits 99.955% of the data. However, the extreme tail of the distribution deviates upward even from the power-law fit and exhibits a dramatic ”runaway” behavior. The onset of the runaway regime is revealed macroscopically as the paper garners 1000-1500 citations, however the microscopic measurements of autocorrelation in citation rates are able to predict this behavior in advance. PACS. 01.75.+m Science and society, – 02.50.Ga Markov processes, – 89.75.Fb Structures and organization in complex systems, – 89.75.Da Systems obeying scaling laws.
منابع مشابه
Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملSample path large deviations of Poisson shot noise with heavy tail semi-exponential distributions
It is shown that the sample paths of Poisson shot noise with heavy-tailed semi-exponential distributions satisfy a large deviation principle with a rate function that is insensitive to the shot shape. This demonstrates that, on the scale of large deviations, paths to rare events do not depend on the shot shape.
متن کاملHessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications
In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...
متن کاملReduced-bias estimators for the Distortion Risk Premiums for Heavy-tailed distributions
Estimation of the occurrence of extreme events actually is that of risk premiums interest in actuarial Sciences, Insurance and Finance. Heavy-tailed distributions are used to model large claims and losses. In this paper we deal with the empirical estimation of the distortion risk premiums for heavy tailed losses by using the extreme value statistics. This approach can produce a potential bias i...
متن کاملSample Path Large Deviations of Poisson Shot Noise with Heavy-tailed Semiexponential Distributions
It is shown that the sample paths of Poisson shot noise with heavy-tailed semiexponential distributions satisfy a large deviation principle with a rate function that is insensitive to the shot shape. This demonstrates that, on the scale of large deviations, paths to rare events do not depend on the shot shape.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1206.1999 شماره
صفحات -
تاریخ انتشار 2012